Agile Zone is brought to you in partnership with:

Mr. Lott has been involved in over 70 software development projects in a career that spans 30 years. He has worked in the capacity of internet strategist, software architect, project leader, DBA, programmer. Since 1993 he has been focused on data warehousing and the associated e-business architectures that make the right data available to the right people to support their business decision-making. Steven is a DZone MVB and is not an employee of DZone and has posted 144 posts at DZone. You can read more from them at their website. View Full User Profile

TDD -- From SME Spreadsheet to TestCase to Code

  • submit to reddit
In "Unit Test Case, Subject Matter Experts and Requirements" I suggested that it's often pretty easy to get a spreadsheet of full-worked out examples from subject-matter experts. Indeed, if your following TDD, that spreadsheet of examples is solid gold.
Let's consider something relatively simple. Let's say we're working on some fancy calculations. Our users explain until they're blue in the face. We take careful notes. We think we understand. To confirm, we ask for a simple spreadsheet with inputs and outputs.
We get something like the following. The latitudes and longitudes are inputs. The ranges and bearings are outputs. [The math can be seen at "Calculate distance, bearing and more between Latitude/Longitude points".]
Latitude 1Longitude 1Latitude 2Longitude 2rangebearing
50 21 50N004 09 25W42 21 04N071 02 27W2805 nm260 07 38

Only it has a a few more rows with different examples. Equator Crossing. Prime Meridian Crossing. All the usual suspects.

TDD Means Making Test Cases
Step one, then, is to parse the spreadsheet full of examples and create some domain-specific examples. Since it's far, far easier to work with .CSV files, we'll presume that we can save the carefully-crafted spreadsheet as a simple .CSV with the columns shown above.
Step two will be to create working Python code from the domain-specific examples.
The creation of test cases is a matter of building some intermediate representation out of the spreadsheet. This is where plenty of parsing and obscure special-case data handling may be necessary.

from __future__ import division
import csv
from collections import namedtuple
import re

latlon_pat= re.compile("(\d+)\s+(\d+)\s+(\d+)([NSWE])")
def latlon( txt ):
match= latlon_pat.match( txt )
d, m, s, h = match.groups()
return float(d)+float(m)/60+float(s)/3600, h
angle_pat= re.compile("(\d+)\s+(\d+)\s+(\d+)")
def angle( txt ):
match= angle_pat.match( txt )
d, m, s = match.groups()
return float(d)+float(m)/60+float(s)/3600
range_pat= re.compile("(\d+)\s*(\D+)")
def range( txt ):
match= range_pat.match( txt )
d, units = match.groups()
return float(d), units

RangeBearing= namedtuple("RangeBearing","lat1,lon1,lat2,lon2,rng,brg")

def test_iter( filename="sample_data.csv" ):
with open(filename,"r") as source:
rdr= csv.DictReader( source )
for row in rdr:
print row
tc= RangeBearing(
latlon(row['Latitude 1']), latlon(row['Longitude 1']),
latlon(row['Latitude 2']), latlon(row['Longitude 2']),
yield tc

for tc in test_iter():
print tc
This shows a simple template with values filled in. Often, we have to generate a hair more than this. A few imports, a "unittest.main()" is usually sufficient to transform a spreadsheet into unit tests that we can confidently use for test-driven development.

Published at DZone with permission of Steven Lott, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)